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Abstract: Semiconductive  two  dimensional  (2D)  materials  have  attracted  significant  research  attention  due  to  their  rich  band
structures and promising potential for next-generation electrical devices. In this work, we investigate the MoS2 field-effect tran-
sistors (FETs) with a dual-gated (DG) architecture, which consists of symmetrical thickness for back gate (BG) and top gate (TG)
dielectric.  The  thickness-dependent  charge  transport  in  our  DG-MoS2 device  is  revealed  by  a  four-terminal  electrical  measure-
ment which excludes the contact influence, and the TCAD simulation is also applied to explain the experimental data. Our res-
ults indicate that the impact of quantum confinement effect plays an important role in the charge transport in the MoS2 chan-
nel,  as it  confines charge carriers in the center of the channel,  which reduces the scattering and boosts the mobility compared
to  the  single  gating  case.  Furthermore,  temperature-dependent  transfer  curves  reveal  that  multi-layer  MoS2 DG-FET  is  in  the
phonon-limited transport regime, while single layer MoS2 shows typical Coulomb impurity  limited regime.
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1.  Introduction

Atomic  thick  two-dimensional  (2D)  layered  materials,
such  as  semi-metallic  graphene  and  semiconductive  trans-
ition metal dichalcogenides (TMDCs),  have emerged as an at-
tractive  candidate  for  future  electronic  and  optoelectrical
materials[1−6].  Among  them,  molybdenum  disulphide  (MoS2)
is  a typical member of TMDCs and considered as a promising
candidate  for  various  device  applications,  mainly  due  to  its
prolific, thickness-dependent band structures[7−10]. The single-
gated field-effect  transistors  (SG-FETs)  based on MoS2 exhibit
excellent  carrier  mobility  (~  200  cm2/(V·s)),  high  current
on/off  ratio  (>  108),  and  low  subthreshold  swing  approach-
ing  the  fundamental  thermal  limit  at  room  temperature[2].
The  short  channel  effects  (SCE)  can  also  be  suppressed  due
to the ultra-thin channel body[7, 11].

Since  the  bandgap  size  is  dependent  on  the  MoS2 layer
number[12−14],  bilayer  (BL)  or  multilayer  (ML)  MoS2 tend  to
achieve  higher  mobility  to  carry  larger  driving  current  than

that  of  monolayer  MoS2.  However,  the  BL  or  ML-MoS2 suffer
from  the  degradation  of  SS  and  the  current  on/off  ratio  due
to  weaker  channel  electrostatic  control.  To  overcome  such  a
problem, the dual-gated (DG) structure,  similar to that of Fin-
FET technology, provides better electrostatic control over the
channel  region  and  is  more  achievable  for  2D-TMDCs[15−18].
Liu et al. achieved a back-gate mobility of up to 517 cm2/(V·s)
and  an  on/off  ratio  higher  than  108 based  on  SiO2,  Al2O3 as
the back-gated and top-gated dielectric[19].  Our previously re-
ported results  based on a DG-FET with symmetrical  back and
top gates also indicate that the DG structure is able to modu-
late  the  threshold  voltage  (VTH)  and  SS  by  tuning  back  and
top gates separately, and a superior channel current (ID) modu-
lation  can  be  achieved  under  the  DG  gating[20−22].  Neverthe-
less,  the  charge transport  and current  distribution influenced
by  DG  structure  have  not  been  systematically  discussed  in
TMDCs devices.

Here,  we  successfully  fabricate  the  MoS2 DG-FETs  with
symmetric back gate (BG) and top gate (TG) based on monolay-
er  and  multilayer  MoS2 films.  The  thickness-dependent
charge  transport  in  our  MoS2 DG  structure  is  revealed  by  a
four-probe  electrical  measurement  which  excludes  the  con-
tact influence, and TCAD simulation shows that the impact of
quantum  confinement  effect  exists  in  thin  MoS2 sheet  sand-
wiched  by  the  DG.  Such  effect  attenuates  with  larger  thick-
ness,  but still  exist  in a 5-nm-thick channel.  The temperature-
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dependent  electrical  measurement  of  our  device  also  indic-
ates  that  transport  of  multilayer  MoS2 DG-FET is  in  the phon-
on-limited  transport  regime,  while  single  layer  MoS2 device
shows typical Coulomb impurity (CI) limited regime.

2.  Device structure and material characterization

The  cross-sectional  schematic  of  MoS2 DG-FET  is  depic-
ted in Fig. 1(a). The fabrication process for such devices starts
from the deposition of a 200-nm-thick Al2O3 layer by atom lay-
er  deposition  (ALD,  MNT-100-4)  on  a  heavily  doped  Si  sub-
strate,  which  acts  as  a  BG  dielectric  layer.  Then  multilayer
MoS2 flakes  are  mechanically  exfoliated  on  top  of  Al2O3,  and
a typical  optical  microscopic image is  shown in Fig.  1(b).  Uni-
form and rectangular shaped MoS2 sheets are selected for sub-
sequent device fabrication. Raman characterization (laser excit-
ation  wavelength  of  514  nm)  is  then  carried  out  to  confirm
the layer number and crystalline quality, as shown in Fig. 1(c).
To avoid lithography contamination, electrical contacts (5 nm
Ti/30 nm Au) are patterned using a stencil mask technique[23].
Immediately  after  the  contact  deposition,  another  layer  of
200-nm-thick  Al2O3 is  deposited  by  ALD  as  TG  dielectric,  fol-
lowed  by  the  formation  of  TG  electrodes  by  traditional
photo-lithography,  metal  evaporation,  and  lift-off.  Electrical
transport  measurements  are  performed  under  an  ambient
condition  with  a  semiconductor  analyzer  (Agilent,  B1500a).
Temperature-dependent  measurement  was  carried  out  in  a
cryogenic vacuum probe-station.

The field-effect  mobility μ is  a  crucial  factor  to  character-
ize the FET performance. For most TMDCs-based FETs, the ef-
fective  value  of μ is  mainly  governed  by  the  contact  rather
than  the  channel  itself[24, 25].  In  order  to  isolate  the  intrinsic
mobility,  we  compensate  for  this  effect  by  utilizing  a  four-

σprob =
ID

V − V
L
W

terminal  structure  to  exclude  the  contact  effect.  The  upper
graph  of Fig.  1(d) is  an  optical  image  of  our  four-terminal
device  and  the  lower  graph  is  a  schematic  diagram  where
the  two  inner  voltage  probes V1 and V2 are  used  to  gauge
the  voltage  drop.  Then  the  four-terminal  conductivity

, where ID is the channel current and L and

W are the length and width of the MoS2 channel inside the in-
ner voltage probes, respectively.

3.  Experimental result and discussion

The  measured σ4prob as  functions  of  BG,  TG  and  DG
modes are  shown in Fig.  2(a).  It  is  noted that  results  from BG
and  TG  modes  are  highly  coincident  due  to  their  symmetric
gating  capability,  while  a  weak  mismatch  at  negative  gate
voltage  region  can  also  be  observed,  which  may  result  from
their  different  dielectric-MoS2 interfaces.  As  for  the  BG,  MoS2

is directly transferred on to the pre-deposited Al2O3,  while for
the  TG,  the  interface  quality  degrades  because  of  the  ab-
sence of dangling bonds on MoS2 for deposition of Al2O3.

It  also  shows  that  DG  mode  displays  an  improved  chan-
nel electrostatic control than that of BG or TG. To further illus-
trate the gate modulation by BG and TG, a 2D contour plot of
σ4prob as  functions  of VBG and VTG is  then  plotted  in Fig.  2(b).
Such 2D diagram shows parallel  diagonal  contours  with  con-
stant current,  and the slope of these contours line is  approxi-
mately 1, indicating that the BG and TG exhibit the same cap-
ability to modulate the channel, since the oxidation layer capa-
citance  of  the  back  gate  and  top  gate  is  nearly  symmetrical
(CBG /CTG ≈ 1).

For SG structure, the field-effect (FE) mobility can be estim-
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Fig. 1. (Color online) (a) Side-view schematic illustration of a MoS2 DG-FET. (b) Optical microscopic image of an exfoliated MoS2 sheet on a 200-
nm-thick Al2O3 substrate. (c) Raman spectra of MoS2 sheets with thickness ranging from 1L to 4L. (d) Optical image of a typical 4-terminal device,
the top gate electrode is relatively thin (15 nm) but still conductive. The lower graph is a schematic of the 4-terminal device in which W is the chan-
nel width and L is the distance between two inner pads. V1 and V2 are used to gauge the voltage drop between two inner contacts.
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μ = 
eCox

dσ
dVG

ated by ,  where Cox is  the  gate  capacitance per

unit  area  (40  nF/cm2 for  200  nm  of  Al2O3), VG is  the  gate
voltage,  and e is  the  elementary  charge.  While  in  the  case  of
a  symmetric  DG  structure  and  considering  top  and  bottom
surfaces  of  MoS2 as  parallel  channels,  we  can  estimate  that
the  total  conductivity σ’DG = σBG + σTG.  Since C’ox-DG ≈  2Cox,
we expect that the quantity μ’DG = (μBG + μTG)/2 will  be equal
to μDG estimated  by  the σDG–VDG curve.  However,  it  appears
that  directly  measured μDG is  generally  larger  than μ’DG,
which indicates  the inadequacy of  this  parallel  channel  mod-
el. We then use ΔμDG = (μDG – μ’DG)/μ’DG to quantify the mobil-
ity  enhancement  of  dual  gating,  and  plot  in Fig.  2(c) ΔμDG

and μDG as functions of the channel thickness. It is noted that
both device mobility and ΔμDG reach a maximum with the MoS2

thickness in the range of 2–6 nm, and such thickness-depend-
ent μDG deviates  from  previously  reported  results  with  only
BG[24, 26, 27],  indicating  a  different  carrier  transport  mechan-
ism in our DG-FETs.

Depending on the channel  thickness,  there  is  a  competi-
tion of multiple mechanisms in our MoS2 DG-FETs: 1) larger cur-
rent  carrying  ability  in  thicker  channels,  but  with  consider-
able  interlayer  resistance[24];  2)  current  redistribution  due  to
the  DG  induced  quantum  confinement  effect;  3)  electrical
transport exposed to extrinsic Coulomb scattering from high-
k dielectrics (e.g. Al2O3, HfO2) and interface for ultra-thin chan-
nels.  Therefore,  the  experimental  results  exhibit  their  overall
competitional  effects.  While  the  first  and  the  third  factors
may have a negative effect on the mobility, we now focus on
the quantum confinement effect, which may avoid the interfa-
cial scattering and enhance the carrier mobility.

To  ravel  the  impact  from  quantum  confinement  effect,
the  carrier  density,  and  distribution  of  the  DG-FETs  are  then
simulated  by  using  the  van  Dort  model,  the  1D  Schrödinger
equation, the density gradient model, and the modified local-
density  approximation  (MLDA).  The  van  Dort  model  com-
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Fig. 2. (Color online) (a) Four-terminal conductivity σ4prob as functions
of BG, TG and DG voltages. Solid and dashed curves correspond to lin-
ear  and  logarithmic  coordinates,  respectively.  (b)  2D  contour  plot  of
σ4prob as  functions  of VBG and VTG at  room  temperature.  (c)  Mobility
versus  sheet  thickness  collected  from  10  MoS2 DG-FETs   work  under
DG mode.
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Fig. 3. (Color online) (a) With and (b) without considering quantum con-
finement effect, the simulation results of carrier redistribution of a 2-
nm-thick MoS2. The upper and lower panels show the simulation res-
ults from the SG (VBG = 10 V) and DG (VBG = VTG = 10 V) device, respect-
ively.  (c)  The  electron  density  in  the  channel  of  the  DG  MoS2 device
versus  channel  thickness.  The  dielectric  layer  is  200  nm  Al2O3. for  all
devices
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putes the impact of electric field normal to the channel inter-
face  on  the  carrier  density  modification  due  to  the  quantiza-
tion. Based on the energy band structures in the channel, the
1D  Schrödinger  equation  was  solved  self-consistently  with
the  Poisson  equation.  The  eigenvalues  and  wave  functions
for  electrons  and  holes  were  obtained  with  consideration  of
multi  valleys  in  conduction  and  valence  bands.  The  density
gradient  model  added  the  quantum  correction  to  the  carrier
distribution  at  interfaces  in  the  device  by  introducing  the
reciprocal  thermal  energy,  mass-driving  term,  and  the
smoothed  potential[28].  In  this  model,  the  bandgap  narrow-
ing  effect  and  apparent  band-edge  shifts  caused  by  multi-
state  configurations  were  involved.  The  MLDA  model  calcu-
lates  the  distribution  of  confined  carriers  near  the  dielectric/
channel  interface.  In  our  simulation,  the  multi  valley  proper-
ties  of  conduction  and  valence  bands  were  considered  in
MLDA model.

Figs. 3(a) and 3(b) compare the quantum-confinement im-
pact on the simulated carrier redistribution in SG (VBG  = 10 V)
and  DG  (VBG  = VTG  =  10  V)  structures.  In  the  DG  structure,
quantum  confinement  effect  is  rather  prominent,  it  repulses
carriers away from dielectric-MoS2 interfaces and confines carri-
ers  inside the channel,  which can suppress  phonon and Cou-
lomb scattering at interfaces and contribute to the mobility im-
provement.  On  the  opposite,  the  carriers  in  the  SG  structure
are  pushed  towards  one  side  of  MoS2,  amplifying  the  inter-
face scattering. Fig.  3(c) shows the calculated carrier  distribu-
tion  in  MoS2 DG  device  with  a  series  of  channel  thicknesses,
by considering quantum confinement effect. It is noticed that
the  impact  of  quantum  confinement  effect  attenuates  with
larger thickness but still exist in a 5 nm thick channel.

Thus,  a  complete  scenario  for  thickness  dependence  of
MoS2 DG-FET  can  be:  thicker  MoS2 carries  current  larger  but
with  less  quantum  confinement  effect,  and  there  are  also
trade-offs  including  large  interlayer  resistance  and  screening
effect  than  weakens  the  gate  control.  For  practical  applica-
tions  of  MoS2 FETs,  considering  critical  parameters  including
μ,  SS  and  current  on/off  ratio,  a  layer  thickness  in  the  range
of 2–6 nm would be ideal by achieving overall satisfying μ, SS
and  current  on/off  ratio[21],  which  is  competitive  comparing
to best SOI[29].

We  then  investigate  the  temperature-dependent  elect-
rical properties of our MoS2 DG-FETs. Fig. 4(a) shows the tem-

perature-dependent  transfer  curve  from  a  multilayer  MoS2

device (~ 5 nm). The channel current increases when temperat-
ure  decreases,  while  the  threshold  voltage VTH hardly  shifts
when  lowering  the  temperature.  In  the  4-terminal  device
architecture,  mobility  extraction  is  more  accurate,  as  shown
in Fig.  4(b).  The  mobility  in  a  multi-layer  MoS2 DG-FET  is  as
high as 763 cm2/(V·s)  (n ≈ 1013 cm–2)  at  125 K (plotted by red
point)  and  can  be  fitted  by T–γ for T >  100  K  with γ =  2.5,
which  is  in  good  agreement  with  theoretically  predicted
value  (γ between  1.52  and  2.6)[30, 31].  This  indicates  that  our
multilayer MoS2 DG-FET is in the phonon-limited transport re-
gime.  While  the temperature-dependent mobility  of  a  mono-
layer  MoS2 device  (grey  points)  shows  typical  CI  limited  re-
gime,  especially  at  low  temperature.  The  CI  limited  mobility
(μCI)  can  be  well  fitted  by  our  calculation  (plotted  by  gray
dash)  considering  screening  effect  by  surrounding  dielect-
rics[32, 33] (15-nm-thick HfO2 for this device) with n ≈ 1013 cm–2

and  impurity  density Nl ≈  2  ×  1013 cm–2.  Such  difference  can
also  originate  from  the  quantum  confinement  effect  but  a
more  detailed  investigation  is  necessary  to  achieve  an  in-
depth understanding in the future.

4.  Conclusion

We  reported  a  systematic  investigation  of  carrier  trans-
port  in MoS2 DG-FETs with a variation of  MoS2 channel  thick-
ness.  DG  structure  provides  better  electrostatic  control  for
the MoS2 FETs. Moreover,  quantum confinement plays an im-
portant  role  in  the  charge  transport,  as  for  a  certain  thick-
ness  of  MoS2,  confinement of  the charge in  the center  of  the
channel  under  DG  mode  reduces  the  scattering  and  thus
boosts  the  mobility  compared  to  single  gating  of  a  similar
thickness  layer.  The  TCAD  simulation  considering  quantum
confinement  reveals  that  the  impact  of  quantum  confine-
ment effect attenuates with larger thickness but still exist in a
5  nm  thick  channel.  Furthermore,  the  phonon-limited  trans-
port regime and CI limited regime were revealed in multi-lay-
er  MoS2 DG-FETs  and  single  layer  MoS2 by  temperature-de-
pendent  transfer  curves,  respectively.  Such  device  architec-
ture together with similar results can be extended to other TM-
DCs based devices.
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